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A B S T R A C T

Blockchain-based healthcare IoT technology research enhances security for smart healthcare services such as
real-time monitoring and remote disease diagnosis. To incentivize positive behavior among participants within
a blockchain-based smart healthcare system, existing efforts employ benefit distribution and reputation assess-
ment methods to enhance performance. Yet, there remains a significant gap in multidimensional assessment
strategies and consensus improvements in addressing complex healthcare scenarios. In this paper, we propose
a blockchain and trusted reputation assessment-based incentive mechanism for healthcare services (BtRaI).
BtRaI provides a realistic and comprehensive reputation assessment with feedback to motivate blockchain
consensus node participation, thus effectively defending against malicious behavior in the healthcare service
system. Specifically, BtRaI first introduces multiple moderation factors for comprehensive multidimensional
reputation assessment and credibly records the assessment results on the blockchain. Then, we propose an
improved PBFT algorithm, grounded in the reputation assessment, to augment blockchain consensus efficiency.
Finally, BtRaI designs a token-based reward and punishment mechanism to motivate honest participation in
the blockchain, inhibit potential misbehavior, and promote enhanced service quality in the healthcare system.
Theoretical analysis and simulation experiments conducted across various scenarios demonstrate that BtRaI
effectively suppresses malicious attacks in healthcare services, improves blockchain node fault tolerance rates,
and achieves blockchain transaction processing efficiency within 0.5 s in a 100-node consortium chain. BtRaI’s
reputation assessment and token incentive mechanism, characterized by realistic differentiation granularity and
change curves, are well-suited for dynamic and complex healthcare service environments.
1. Introduction

The Healthcare Internet of Things (H-IoT), emerging from the
rapidly evolving Internet of Things technology and the era of person-
alized digital health, significantly facilitates people’s lives. H-IoT has
the capability to enhance disease monitoring, improve the quality of
diagnosis and treatment, and reduce healthcare costs [1,2]. However,
H-IoT faces troubling security and privacy issues due to the sensi-
tivity of patient medical data [3,4]. Information breaches and data
tampering resulting from improper management or malicious attacks
during the sharing, transmission, and remote access of patient medical
data frequently occur [5]. Therefore, ensuring the security and privacy
of medical data has become a significant challenge for the modern
healthcare industry [6,7].

Recently, research on tamper-proof and traceable healthcare IoT
security technology combined with blockchain technology has become
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an emerging trend [8,9]. Researchers are continuously exploring to
promote the application and development of blockchain-based IoT
security technologies in healthcare. This includes enhancing the privacy
of shared healthcare data [10–13] and improving the reliability of
smart healthcare devices [14,15]. These efforts demonstrate the im-
mense potential of blockchain technology in enhancing the security and
reliability of H-IoT services, thereby contributing to the evolution of the
blockchain-based smart healthcare system [16].

Although the introduction of blockchain systems provides data tam-
pering resistance and privacy enhancement for H-IoT, the issues of
collaboration and incentive among distributed entities have emerged
as potential threats. Blockchain-based smart healthcare systems depend
on the active collaboration and participation of distributed entities for
the smooth and regular operation. However, in practice, the system
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performance is often challenged by the dynamically changing environ-
ment and unpredictable entity behavior [17]. For instance, malicious
patient behavior could lead to wasteful utilization of remote healthcare
resources, healthcare institutions might deliver low-quality medical
services, and blockchain nodes could exhibit passive participation in
system maintenance.

Effective incentives are an important way to prevent malicious
services and system performance degradation. Through rewards and
penalties, incentive mechanisms promote the provision of high-quality
services by all participants, reduce the risk of data leakage and tamper-
ing, and prevent malicious competition and misuse of resources [18].
The sharing of medical data and the provision of healthcare services in
the blockchain-based smart healthcare system are primarily driven by
stakeholder interests and efficiency gains [19].

Existing incentive mechanisms partly focus on encouraging patients
to proactively share medical data, ensuring the effective utilization
of medical data [20,21]. However, these mechanisms do not address
the issue of malicious attacks in distributed systems. Additional efforts
have been made in multi-party collaboration platforms to consider
the allocation of benefits among participants. For example, token re-
wards incentivize participants to enhance service quality and data
reliability [19,22,23]. Furthermore, establishing a behavioral evalua-
tion system that considers participants’ historical behavior can create
a dynamic reputation score. Service providers can be selected or re-
warded based on their scores [24]. However, in practice, incentive
mechanisms can be further enhanced to punish malicious behavior,
ensure service quality, and promote the stable operation of the system.
These enhancements have been widely applied and validated in other
IoT domains [25–27].

Based on the aforementioned observations, with the increasing com-
plexity and scale of application scenarios in blockchain-based smart
healthcare systems, the main challenges in adequately utilizing the
incentive mechanism are as follows:

• Existing research on incentive mechanisms in blockchain-based
smart healthcare systems throughout the healthcare process has
limitations in promoting reliable data sharing, on-chain transac-
tions, and consensus mechanisms.

• The absence of a comprehensive, multidimensional approach in
reputation assessment, crucial for incentive mechanism design,
can undermine system fairness and reduce participants’ motiva-
tion.

• Research is limited on how incentive mechanisms and blockchain
efficiency mutually reinforce each other. The lack of improve-
ments in consensus mechanisms leads to poor integration of
reputation assessment with the blockchain system, which in turn
reduces the motivation for user participation in consensus pro-
cess [28].

Hence, in this paper, we propose a Blockchain and trusted
Reputation assessment-based Incentive mechanism for healthcare ser-
vices (BtRaI). It addresses the trusted reputation assessment challenge,
which involves multiple entities and dimensions. Furthermore, BtRaI
designs a reputation-based consensus algorithm and a token incentive
mechanism. The contributions of this paper can be summarized as
follows:

(1) We propose a comprehensive and credible reputation assessment
method. Multifactor moderation and multidimensional assess-
ment are used to suppress malicious or collusive scoring attacks,
and reputation-based token rewards and penalties are designed
to motivate service quality improvement.

(2) We design a consensus mechanism characterized by high fault
tolerance and efficiency. Leveraging reputation assessment re-
sults, this mechanism dynamically interchange consensus nodes
and validation nodes. It thus defends against both faulty and
malicious nodes while encouraging positive behavior through
60

incentive mechanisms.
(3) We validate the effectiveness of BtRaI through simulation exper-
iments across various scenarios. BtRaI demonstrates comprehen-
sive reputation assessment capabilities against attack interfer-
ence and malicious behavior. The improved consensus algorithm
significantly outperforms PBFT in efficiency. BtRaI can be effec-
tively applied to healthcare service incentives in dynamic and
complex scenarios.

The rest of this paper is organized as follows. Section 2 introduces
the related work. In Section 3, we present the system model and design
goals. In Section 4, we describe in detail the proposed BtRaI. We present
the security and theoretical analysis of BtRaI in Section 5 and evaluate
BtRaI in Section 6. Finally, a conclusion is drawn in Section 7.

2. Related work

In the service field, incentive mechanisms can motivate all parties to
complete system tasks, guarantee the security of the service transaction
process, and promote the quality of services [29]. The introduction of
incentive mechanisms in blockchain-based service systems can enhance
the motivation of nodes to participate in processes such as block
validation and data sharing. This approach not only avoids the security
risks associated with trusted third parties but also helps prevent issues
such as trust deficits and privacy leakage, thereby further guaranteeing
service quality [17,27]. Wang et al. [25] designed a smart contract-
based incentive mechanism in a consortium chain-based vehicular edge
computing system, which motivates vehicles to share computing re-
sources with service requesters and prevents malicious behavior for
selfish purposes. Noshad et al. [27] proposed a decentralized incen-
tive and reputation mechanism for crowdsensing networks. Monetary
rewards are employed to incentivize data collectors and encourage
participation in network activities. Meanwhile, the reputation system
addresses issues including data integrity, fake reviews, and conflicts
among entities.

Similarly, trustworthy incentives for blockchain-based healthcare
services can help promote regular operations and quality improvement.
Gan et al. [21] designed an incentive mechanism in a blockchain-based
e-health system, providing rewards to patients for sharing medical
data, with the rewards contingent on data quality and the level of
patient engagement. Zhu et al. [19] proposed a Shapley value-based
scheme to incentivize collaboration in medical data sharing on the
blockchain. This approach encourages participants to actively engage
in cooperation by providing a mechanism for fair benefit distribu-
tion. Similarly, other works such as [22] and [23] also utilize benefit
allocation as an incentive mechanism. Shen et al. [22] designed a
blockchain-based Shapley value scheme to encourage data owners to
share reliable data. Litchfield et al. [23] described incentives through
token rewards in a blockchain-based healthcare service system. It is
aimed at encouraging and engaging patients to participate in and use
prescription management systems and mitigating the negative effects of
inequality in healthcare services. There are also efforts to design incen-
tives based on reputational assessments. Purohit et al. [24] proposed
a health information-sharing system based on blockchain technology
called HonestChain. HonestChain rates and determines the reputation
of medical data requesters and providers based on their respective
historical feedback and risk levels. Using these reputation results, it
assesses the responsiveness to service requests and the likelihood of ser-
vice provision, fostering incentive-driven and trust-based collaboration
among organizations.

However, further exploration is needed to delve into the design of
incentive mechanisms, particularly in the design of multidimensional
reputation assessment and the improvement of blockchain consensus
mechanisms, to enhance the efficiency and reliability of blockchain-

based smart healthcare systems.
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Fig. 1. System model.
3. System model and design goal

3.1. System model

The system model shown in Fig. 1 consists of PnF (Patient and pa-
tient’s Family), HC (Healthcare Center), CSP (Cloud Service Platform),
and CB (Consortium Blockchain), with the specific roles and functions
of each entity described below:

(1) PnF, comprising patients and their family members, can proac-
tively request a medical visit by sharing an EHR (Electronic
Health Record) and submitting its summary to the blockchain
for deposition. Also, PnF receives smart health diagnostics and
healthcare education from HC while providing feedback and fee
payments through smart contracts on CB.

(2) HC is responsible for providing diagnosis and education services
to PnFs. HC initiates EHR access requests for PnFs from the CSP
and uploads the updated diagnosis and education content to the
CSP for storage. Additionally, HC publishes summary informa-
tion, including hash value and service cost, on the blockchain
for deposition.

(3) The CSP serves as a data storage platform with high capacity
and performance, providing search functions and transmitting
encrypted information to authorized entities. Additionally, it
synchronously logs access to encrypted data on the consortium
chain.

(4) CB, a permissioned blockchain, enables PnF and HC to securely
share data in a trusted environment through a strict review and
access mechanism. Smart contracts, deployed on CB, facilitate
entity interactions. CB stores only lightweight data, ensuring
tamper-proof and traceable capabilities.

The workflow of the BtRaI system model is described as follows:

(1) After receiving healthcare services from HCs, PnFs send
(𝐏𝐫𝐇𝐂, 𝑃 𝑟𝐶𝑆𝑃 ) to the consortium chain CB for feedback assess-
ment via smart contract function, including the score matrix
𝐏𝐫𝐇𝐂 for all HCs and the score 𝑃𝑟𝐶𝑆𝑃 for CSPs. Similarly, CSPs
compute the score (𝐂𝐫𝐏𝐧𝐅,𝐂𝐫𝐇𝐂) for all PnFs and all HCs on the
chain, and HCs compute the score (𝐇𝐫𝐏𝐧𝐅,𝐇𝐫𝐇𝐂,𝐻𝑟𝐶𝑆𝑃 ) for all
PnFs, other peer HCs and CSPs on the chain.

(2) Based on the historical reputation of PnFs, CSPs, and HCs, as
well as current ratings in various aspects, the smart contract on
the CB calculates the comprehensive reputation of each entity
at the present time. This information is accessible to the nodes
participating in the CB.

(3) Nodes with higher reputations are eligible to participate di-
rectly in the consensus process of the blockchain, generating
blocks containing transactions and reputation assessment re-
sults in each time period. The comprehensive reputation results
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of each node are recorded in the block using a Merkle tree
structure.

(4) Throughout the healthcare service system, internode interac-
tions, transaction requests, and smart contracts usage necessitate
token pledges. A token-based reward and punishment mecha-
nism encourages honest participation and active engagement in
the blockchain’s consensus process among nodes.

3.2. Threat model

Based on the system model described in Fig. 1, the following types
of attacks may exist:

(1) False reputation assessment attacks: Providing unrealistic (low
or high) ratings to an entity in an attempt to devalue or inflate
its comprehensive reputation, which in turn disrupts the system’s
consensus and incentive mechanisms. These attacks may involve
collusion among entities that exchange higher ratings while
unfairly assigning low ratings to others.

(2) Short-term honest service attacks: To achieve higher reputa-
tional ratings and greater consensus opportunities, some entities
attempt to achieve high long-term reputations and rewards by
temporarily improving their healthcare performance.

(3) Temporary malicious attacks: Although some entities consis-
tently maintain good performance and a high reputation over
time, they may later engage in malicious healthcare service
practices, using their previously established honesty to deflect
scrutiny of their temporary misconduct.

(4) Byzantine attacks [30,31]: During block consensus, some nodes
may encounter failures or exhibit malicious behavior by pro-
viding incorrect consensus or validation results, with the aim
of deliberately undermining the efficiency and integrity of the
consensus process.

3.3. Design goal

Based on the system model and threat model described above, the
designed scheme should satisfy the following goals:

(1) Defending against malicious assessments and collusion attacks
[32]: With the majority of nodes being honest, malicious as-
sessments, including those from colluding nodes, should receive
a correspondingly lower weighting in the final comprehensive
reputation assessment to minimize their influence on the results.

(2) Trusted and practical reputation assessment: The reputation of
each node is recorded in a trusted and fault-tolerant blockchain
environment. The reputation accumulation mechanism is tai-
lored for practical applications, where reputation increases grad-
ually with good behavior but declines rapidly with malicious
behavior.
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(3) Effective differentiation in reward and punishment mechanisms:
Assessment results should distinctly categorize nodes based on
reputation levels, offering varied token rewards accordingly. The
adopted reward and punishment mechanism should widen the
gap in reputation and token rewards between constructive and
malicious behavior.

(4) Resilience against other attacks: BtRaI should be capable of
withstanding common attacks, including external and internal
forgery, replay, repudiation, DDoS, and 51% attacks.

4. The proposed BtRaI

BtRaI first proposes a multidimensional reputation assessment
method with multifactor moderation to measure the reputation of each
entity more comprehensively and stably. Subsequently, an improved
PBFT algorithm is proposed, which leverages the reputation assessment
to enhance the efficiency of the consensus process. Finally, BtRaI en-
courages honest completion of blockchain maintenance tasks honestly
through token rewards and penalties, thereby enhancing service quality
among all involved parties.

4.1. Multidimensional comprehensive reputation assessment with multifac-
tor moderation

The assessment method is based on the principle that reputation
values are not easily accumulated but quickly degraded by malicious
behavior, as a way to discourage malicious behavior of legitimate users
in the system [33]. Reputation calculations are dynamically updated at
regular intervals or upon reaching a threshold number of assessments,
triggering an automatic update of the comprehensive reputation.

Let 𝑃𝑛𝐹 = {𝑃𝑛𝐹1, 𝑃 𝑛𝐹2, 𝑃 𝑛𝐹3,… , 𝑃 𝑛𝐹𝑛} denote the set of PnFs,
nd 𝐻𝐶 = {𝐻𝐶1,𝐻𝐶2,𝐻𝐶3,… ,𝐻𝐶𝑚} denote the set of HC. The
omprehensive reputation scores of HC, PnF, and CSP are denoted by
𝐻𝐶 , 𝑅𝑃𝑛𝐹 , and 𝑅𝐶𝑆𝑃 , respectively. At time 𝑡+1, let 𝑅𝑡+1

𝐻𝐶𝑘
, 𝑅𝑡+1

𝑃𝑛𝐹𝑘
, and

𝑅𝑡+1
𝐶𝑆𝑃𝑘

denote the comprehensive reputation scores of the 𝑘th HC, PnF,
nd CSP, respectively. The reputation calculation processes for HC, PnF,
nd CSP are described below.

.1.1. HC comprehensive reputation calculation
The factors affecting the comprehensive reputation of 𝐻𝐶𝑘 at the

moment 𝑡 + 1 include:
(1) The historical reputation of HC 𝑅𝑡

𝐻𝐶𝑘
. Scores initialized at the

= 0 moment for hospital rank, equipment resources, and profi-
iency in diseases that are given at registration after CB administrator
erification.

(2) Assessment from PnFs. The direct reputation assessment from
𝑛𝐹𝑖, denoted as 𝑃𝑟𝑖𝑘, considers indicators including the speed of

esponse, satisfaction levels with diagnosis and education, and the
xtent of EHR tampering and data leakage. 𝑃𝑟𝜏𝑖𝑘 is calculated as

𝑟𝜏𝑖𝑘 =
𝑄𝜏

𝑖𝑘
𝜆𝜏𝑖𝑘(𝑇 𝑎𝑚

𝜏
𝑖𝑘 + 𝐿𝑒𝜏𝑖𝑘 + 1)

, (1)

where 𝜏 = 𝑡 + 1 only when the corresponding score has an update at
the 𝑡 + 1 moment, otherwise 𝜏 = 𝑡. The service quality, denoted by
𝑄𝜏

𝑖𝑘, includes 𝑃𝑛𝐹𝑖’s satisfaction with diagnosis and education. 𝑇 𝑎𝑚𝜏
𝑖𝑘

represents the degree of EHR tampering, and 𝐿𝑒𝜏𝑖𝑘 indicates the extent
of data leakage in 𝐸𝐻𝑅𝑖𝑘. If 𝑇 𝑎𝑚𝜏

𝑖𝑘 and 𝐿𝑒𝜏𝑖𝑘 are not equal to 0, the CB
administrator is responsible for verifying the correlation between the
tampering or leakage and 𝐻𝐶𝑘, and the penalty factor 𝜆𝜏𝑖𝑘 is assigned
accordingly. There are uniform range criteria for 𝑄𝜏

𝑖𝑘, 𝑇 𝑎𝑚𝜏
𝑖𝑘, 𝐿𝑒𝜏𝑖𝑘, and

𝜆𝜏𝑖𝑘 among different PnFs.
If there is no direct interaction between 𝑃𝑛𝐹𝑖 and 𝐻𝐶𝑘 at 𝑡 + 1

moment, then 𝑃𝑟𝜏𝑖𝑘 = 𝑃𝑟𝑡+1𝑖𝑘 = 𝑃𝑟𝑡𝑖𝑘, which means that the interaction
assessment at the previous moment is used as the score at 𝑡+1 moment;
if there has been no direct interaction between 𝑃𝑛𝐹𝑖 and 𝐻𝐶𝑘, then

𝜏
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𝑃𝑟𝑖𝑘 = 0. To mitigate malicious assessments from PnF, it is essential
to compute the credibility of PnF’s assessment, denoted as 𝑃𝑐𝑟𝜏𝑖𝑘. 𝑃𝑐𝑟𝜏𝑖𝑘
is calculated as shown in Eq. (2), which represents the validity of the
score 𝑃𝑟𝜏𝑖𝑘 given by 𝑃𝑛𝐹𝑖 within the context of all PnFs’ assessments of
𝐻𝐶𝑘.

𝑃𝑐𝑟𝜏𝑖𝑘 = 1 −

√

√

√

√

(𝑃𝑟𝜏𝑖𝑘 −

∑𝑛′
𝑗=1 𝑃𝑟

𝜏
𝑗𝑘

𝑛′
)

2

, (2)

where 𝑛′ represents the number of 𝑃𝑟𝜏𝑖𝑘 with non-zero assessment
alues. Finally, the reputation assessments of all PnFs on 𝐻𝐶𝑘 at the
oment 𝑡 + 1 are denoted by 𝑃𝑅𝜏

𝐻𝐶𝑘
, as shown in Eq. (3).

𝑅𝜏
𝐻𝐶𝑘

= (
𝑛′
∑

𝑖=1
𝑃𝑐𝑟𝜏𝑖𝑘 × 𝑃𝑟𝜏𝑖𝑘)∕𝑛

′, (3)

(3) Assessment from peer HCs. Similar to the calculation of PnFs’
reputation assessment of HCs, the reputation assessment 𝐻𝑅𝜏

𝐻𝐶𝑘
of the

remaining HCs on 𝐻𝐶𝑘 is calculated as

𝐻𝑅𝜏
𝐻𝐶𝑘

= (
𝑚−1
∑

𝑖=1,𝑖≠𝑘
𝐻𝑐𝑟𝜏𝑖𝑘 ×𝐻𝑟𝜏𝑖𝑘)∕𝑚 − 1,

𝐻𝑐𝑟𝜏𝑖𝑘 = 1 −

√

√

√

√

(𝐻𝑟𝜏𝑖𝑘 −

∑𝑚−1
𝑗=1,𝑗≠𝑘 𝐻𝑟𝜏𝑗𝑘
𝑚 − 1

)

2

,

(4)

where 𝐻𝑟𝜏𝑖𝑘(𝑖 ≠ 𝑘) denotes the peer reputation assessment of 𝐻𝐶𝑖 on
𝐻𝐶𝑘, which is not 0 by default and takes values in the range (0, 1].
𝑐𝑟𝜏𝑖𝑘 denotes the assessment credibility, which refers to the credibility

f 𝐻𝑟𝜏𝑖𝑘 in the context of all HC assessments of 𝐻𝐶𝑘.
(4) Assessment from CSP. The reputation assessment of CSP on

𝐶𝑘, denoted as 𝐶𝑅𝜏
𝐻𝐶𝑘

, is calculated as 𝐶𝑅𝜏
𝐻𝐶𝑘

= 𝑅𝑡
𝐶𝑆𝑃 × 𝐶𝑟𝜏𝑘. Here,

𝑟𝜏𝑖𝑘 denotes the direct reputation assessment of 𝐻𝐶𝑘 by the CSP,
ased on interaction performance, with values in the range (0, 1]. The
omprehensive reputation of the sole CSP in the system, 𝑅𝑡

𝐶𝑆𝑃 , is used
s the credibility factor in this calculation.

(5) Historical maintenance on the consortium chain. Let 𝐵𝑅𝜏
𝐻𝐶𝑘

enote the maintenance score of 𝐻𝐶𝑘 on the consortium chain. This
core is influenced by various factors, including the number of correctly
enerated consensus blocks 𝑎𝑐𝑛𝑢𝑚𝜏

𝑘, the average block generation speed
̄𝜏
𝑘 (with larger values indicating faster speed on a scale of 1–5), the
umber of correctly validated blocks 𝑎𝑐𝑣𝑎𝑙𝜏𝑘, the number of incorrectly
enerated consensus blocks 𝑤𝑟𝑛𝑢𝑚𝜏

𝑘, and the number of incorrectly
alidated blocks 𝑤𝑟𝑣𝑎𝑙𝜏𝑘. The 𝐵𝑅𝜏

𝐻𝐶𝑘
is calculated as

𝑒ℎ𝜏𝐻𝐶𝑘
=

𝑎𝑐𝑛𝑢𝑚𝜏
𝑖 × 𝑓 𝜏

𝑖 + 𝑎𝑐𝑣𝑎𝑙𝜏𝑖
𝑤𝑟𝑛𝑢𝑚𝜏

𝑖 +𝑤𝑟𝑣𝑎𝑙𝜏𝑖 + 1
,

𝐵𝑅𝜏
𝐻𝐶𝑘

= 1

1 + 𝑒
−𝜔×𝐵𝑒ℎ𝜏𝐻𝐶𝑘

.
(5)

By utilizing the sigmoid function 𝑓 (𝑥) = 1∕(1 + 𝑒−𝑥), each 𝐵𝑅𝜏
𝐻𝐶𝑘

is confined to the interval [0.5, 1), where 𝜔 is referred to as the gap
modifier. Thus, we obtain the HC comprehensive reputation 𝑅𝑡+1

𝐻𝐶𝑘
at

𝑡 + 1 moments calculated as

𝑅𝑡+1
𝐻𝐶𝑘

= (1−𝛾)𝑅𝑡
𝐻𝐶𝑘

+𝛾(𝛼1𝑃𝑅𝜏
𝐻𝐶𝑘

+𝛼2𝐻𝑅𝜏
𝐻𝐶𝑘

+𝛼3𝐶𝑅𝜏
𝐻𝐶𝑘

+𝛼4𝐵𝑅𝜏
𝐻𝐶𝑘

). (6)

Here, 𝛾 ∈ (0, 1) denotes the learning rate factor. 𝛼1, 𝛼2, 𝛼3, and 𝛼4
represent the weight percentages of PnF, HC, CSP assessment, and per-
formance on consortium chain maintenance, respectively. Moreover,
these weights must sum up to 1 (𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = 1).

Furthermore, we adjust the value of the 𝛾 parameter based on the
relationship between the historical reputation 𝑅𝑡

𝐻𝐶𝑘
and the current

performance score, which is a weighted sum of four factors: 𝛼1𝑃𝑅𝜏
𝐻𝐶𝑘

+
𝛼2𝐻𝑅𝜏

𝐻𝐶𝑘
+𝛼3𝐶𝑅𝜏

𝐻𝐶𝑘
+𝛼4𝐵𝑅𝜏

𝐻𝐶𝑘
. If the historical reputation exceeds the

current performance score, we set 𝛾 = 𝛾1. If it is lower, 𝛾 = 𝛾2, where
0 < 𝛾2 < 𝛾1 < 1. This asymmetric approach to reputation calculation
ensures that only long-term good behavior can gradually increase repu-
tation, whereas malicious behavior result in more significant reputation
damage, deterring potential malicious activities.
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4.1.2. PnF comprehensive reputation calculation
Similar to the comprehensive reputation calculation of HC, the

comprehensive reputation of 𝑃𝑛𝐹𝑘 incorporates several factors: the
historical reputation 𝑅𝑡

𝑃 𝑛𝐹𝑘
, assessment from HC (𝐻𝑅𝜏

𝑃𝑛𝐹𝑘
), assessment

from CSP (𝐶𝑅𝜏
𝑃𝑛𝐹𝑘

), along with performance scores in the consortium
chain (𝐵𝑅𝜏

𝑃𝑛𝐹𝑘
). 𝑅𝑃𝑛𝐹𝑘 is initialized at 𝑡 = 0 as a score reflects 𝑃𝑛𝐹𝑘’s

size, average age, and average equipment resources. 𝑅𝑡+1
𝑃𝑛𝐹𝑘

is calculated
s
𝑡+1
𝑃𝑛𝐹𝑘

= (1 − 𝛾)𝑅𝑡
𝑃 𝑛𝐹𝑘

+ 𝛾(𝛽1𝐻𝑅𝜏
𝑃𝑛𝐹𝑘

+ 𝛽2𝐶𝑅𝜏
𝑃𝑛𝐹𝑘

+ 𝛽3𝐵𝑅
𝜏
𝑃𝑛𝐹𝑘

), (7)

here 𝛽1 + 𝛽2 + 𝛽3 = 1. A penalty factor 𝜂𝜏𝑖𝑘 is introduced in the
alculation of 𝐻𝑅𝜏

𝑃𝑛𝐹𝑘
, and when 𝜂𝜏𝑖𝑘 > 1 indicates that 𝑃𝑛𝐹𝑘 has wasted

𝐶𝑖 medical resources or made invalid requests, as shown in Eq. (8).

𝐻𝑅𝜏
𝑃𝑛𝐹𝑘

= (
𝑚′
∑

𝑖=1
𝐻𝑐𝑟𝜏𝑖𝑘 ×

𝐻𝑟𝜏𝑖𝑘
𝜂𝜏𝑖𝑘

)∕𝑚′,

𝐻𝑐𝑟𝜏𝑖𝑘 = 1 −

√

√

√

√

(𝐻𝑟𝜏𝑖𝑘 −

∑𝑚′

𝑗=1 𝐻𝑟𝜏𝑗𝑘
𝑚′ )

2

,

(8)

here 𝐻𝑟𝜏𝑖𝑘 takes values in the range [0, 1]. 𝐻𝑟𝜏𝑖𝑘 is equal to the score of
he previous moment if there is no healthcare interaction at the current
oment, and 𝐻𝑟𝜏𝑖𝑘 = 0 if there is never a healthcare relationship. 𝑚′

epresents the count of non-zero 𝑃𝑟𝜏𝑖𝑘 assessment values.

.1.3. CSP comprehensive reputation calculation
The comprehensive reputation of 𝐶𝑆𝑃𝑘 is determined by several

actors: its historical reputation 𝑅𝑡
𝐶𝑆𝑃𝑘

, assessment from PnF (𝑃𝑅𝜏
𝐶𝑆𝑃𝑘

)
nd HC (𝐻𝑅𝜏

𝐶𝑆𝑃𝑘
), and its performance scores in the consortium chain

𝐵𝑅𝜏
𝐶𝑆𝑃𝑘

). 𝑅𝐶𝑆𝑃𝑘 is initialized at 𝑡 = 0 as a score reflects 𝐶𝑆𝑃𝑘’s
resources, computing power, and performance in other services. 𝑅𝐶𝑆𝑃𝑘
is calculated as

𝑅𝑡+1
𝐶𝑆𝑃𝑘

= (1 − 𝛾)𝑅𝑡
𝐶𝑆𝑃𝑘

+ 𝛾(𝛿1𝑃𝑅𝜏
𝐶𝑆𝑃𝑘

+ 𝛿2𝐻𝑅𝜏
𝐶𝑆𝑃𝑘

+ 𝛿3𝐵𝑅
𝜏
𝐶𝑆𝑃𝑘

),

𝑃𝑅𝜏
𝐶𝑆𝑃𝑘

= (
𝑛
∑

𝑖=1
𝑃𝑐𝑟𝜏𝑖𝑘 × 𝑃𝑟𝜏𝑖𝑘)∕𝑛,

𝑃 𝑐𝑟𝜏𝑖𝑘 = 1 −

√

(𝑃𝑟𝜏𝑖𝑘 −

∑𝑛
𝑗=1 𝑃𝑟

𝜏
𝑗𝑘

𝑛
)
2

,

𝐻𝑅𝜏
𝐶𝑆𝑃𝑘

= (
𝑚
∑

𝑖=1
𝐻𝑐𝑟𝜏𝑖𝑘 ×𝐻𝑟𝜏𝑖𝑘)∕𝑚,

𝐻𝑐𝑟𝜏𝑖𝑘 = 1 −

√

(𝐻𝑟𝜏𝑖𝑘 −

∑𝑚
𝑗=1 𝐻𝑟𝜏𝑗𝑘

𝑚
)
2

,

(9)

where 𝛿1 + 𝛿2 + 𝛿3 = 1, and because every entity interacts with the
CSP, 𝑃𝑟𝜏𝑖𝑘 and 𝐻𝑟𝜏𝑖𝑘 are usually non-zero. In the absence of current
interactions, the score from the previous time step is used.

Throughout the healthcare service process, each entity’s compre-
hensive reputation score is included as one of its attributes. For in-
stance, when a PnF visits a doctor, a HC with a comprehensive rep-
utation score of at least 0.9 can be specified as a condition. An entity
falling below a specific comprehensive reputation score threshold will
be excluded from the consortium chain. To rejoin, it must undergo
a rigorous audit and re-registration process, administered by the CB
administrator. Notably, a CSP is typically an entity with high credibil-
ity [34]. A continuous decrease or failure of reputation may lead to a
change in the CSP service source, subject to audit confirmation.

4.2. Reputation-based RPBFT consensus

PBFT (Practical Byzantine Fault Tolerance) is a fault-tolerant and re-
silient consensus algorithm [35], employed in permissioned
blockchains to reduce computational overhead and increase transaction
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throughput [36]. The basic flow of PBFT consensus is shown in Fig. 2,
Fig. 2. PBFT consensus process.

where the number of non-functional faulty or malicious nodes in the
consensus nodes is 𝑓 (node 3 is faulty in this example).

PBFT is divided into the following five phases:

(1) Request phase: The client submits a transaction request to the
master node (node 0 at the current moment).

(2) Pre-prepare phase: Master node 0 broadcasts a signature packet
containing a summary of the request message to other consensus
nodes in the network.

(3) Prepare phase: Node 1 and node 2, functioning properly, verify
the signature packet from master node 0. Upon validation, they
cache the packets of the Pre-prepare message and broadcast their
Prepare signature packets. They also verify and cache Prepare
signature packets received from other nodes. If the node caches
2𝑓+1 signature packets (its own included) within the designated
timeframe, it moves to the next phase.

(4) Commit phase: After completing the Prepare phase, a normal
node broadcasts its Commit packets and then verifies and caches
Commit packets from other nodes. If the node collects at least
2𝑓 + 1 Commit packets within a specified timeframe (its own
included), it proceeds to execute the request and records the
associated blocks in the database.

(5) Reply phase: After the above processing, the node will reply to
the client. Consensus is completed when the client collects 𝑓 +1
valid messages from different nodes.

In a system containing 𝑓 faulty or malicious nodes, when the total
number of network nodes 𝑁 exceeds 3𝑓 (i.e., 𝑁 ≥ 3𝑓 + 1), the normal
peration of the distributed system can be guaranteed. This condition
eans that the maximum fault-tolerant number of PBFT is (𝑁 − 1)∕3.

The algorithmic complexity of PBFT is 𝑂(𝑁2). PBFT may suffer from
erformance issues, like significant network communication overhead,
hen handling many nodes and transactions, owing to the extensive

ommunications and confirmations required [31]. To address these
ssues, in BtRaI, we propose a PBFT consensus mechanism based on
he comprehensive reputation assessment, called RPBFT. The improved
onsensus mechanism is illustrated in Fig. 3.

The specific process of RPBFT is described as follows:

(1) Determine the node numbers of all consortium chain participat-
ing entities: Sort the 𝑁𝑜𝑑𝑒𝐼𝐷 of each consensus node from 0 to
𝑁 − 1. This sorting is based on the descending order of each
entity’s comprehensive reputation. 𝑁 is defined as 𝑛 + 𝑚 + 1,
representing the total number of nodes, where 𝑛 is the number
of PnFs and 𝑚 is the number of HCs.

(2) Divide consensus committee nodes and validation nodes: Nodes
with number indexes from 0 to 𝑐_𝑛𝑢𝑚−1 are selected as consensus
committee nodes, and nodes with number indexes from 𝑐_𝑛𝑢𝑚 to
𝑁 − 1 are selected as validation nodes.
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Fig. 3. RPBFT consensus mechanism based on reputation assessment.
(3) Block consensus and block validation: Consensus committee
nodes use the PBFT algorithm for consensus, where the node
with the highest reputation acts as the Leader and is responsible
for packing transactions into blocks. Block generation authority
rotates among these nodes based on reputation rank. The consen-
sus committee node will participate in the consensus process of
𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 blocks. Validation nodes retrieve, verify, and decide
on the acceptance of new blocks. If a majority of validation
nodes (exceeding the number of consensus committee nodes)
reject a block, all consensus committee nodes suffer a collective
reputation penalty of 𝜙. Subsequently, the node replacement
phase begins in advance, and the consensus process will be
repeated.

(4) Consensus committee node replacement: After the consensus
of 𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 blocks, 𝑁𝑜𝑑𝑒𝐼𝐷 will be re-ranked according to
the comprehensive reputation to determine a new index, and
then step (2) will be repeated. To prevent malicious groups or
collusion attacks, if the new consensus committee nodes include
more than ⌈(𝑐_𝑛𝑢𝑚 − 1)∕2⌉ nodes from the previous round, the
⌈(𝑐_𝑛𝑢𝑚 − 1)∕2⌉ nodes with the highest indices among them are
replaced by ⌈(𝑐_𝑛𝑢𝑚 − 1)∕2⌉ nodes with lower indices from the
validation nodes. Then repeat step (3).

Since the calculation of the comprehensive reputation score is dy-
namically updated, the reputation-based RPBFT consensus committee
nodes and validation nodes are also dynamically updated and have
reputation-based trustworthiness guarantees. Combined with the incen-
tive mechanism described in the next subsection, active and honest
participation in the consortium chain is rewarded: HCs receive high
reputation and tokens for EHR data requests; PnFs gains tokens for
diagnostic and educational resources; the CSP earns token rewards and
opportunities to provide services.

4.3. Reputation-based incentives

In the BtRaI system, based on the comprehensive reputation as-
sessment, tokens (called CareCoin) are issued, paid, and rewarded
as incentives. CareCoin is relevant to the interests of the entity and
can be used to attract consensus participants and validators, thereby
facilitating the operation of the consensus mechanism. The incentive
mechanisms in each phase are outlined below:

(1) Initialization: CareCoin is issued for each registered entity based
on their initial comprehensive reputation at the time of registration. If
the 𝑅𝑝 value falls below 0.6, the entity must undergo a review process
for re-registration to regain CareCoin.

(2) Consensus reward and punishment: For the nodes participating
in consensus, the CareCoin gain 𝑈𝑀 obtained by generating correct
blocks and invalid blocks is calculated by Eq. (10).

𝑈𝑀 =

⎧

⎪

⎨

⎪

𝑅𝑝 × 𝑅𝑤𝑀

1∕(1 + 𝑒𝑇𝑠−𝑇𝑓 )
− 𝐾

2𝑅𝑝
, If the block is valid;

(10)
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⎩

− 𝐾, If the block is invalid.
For the nodes involved in validation, the CareCoin gains 𝑈𝑉 that
generate correct and invalid validation are calculated by Eq. (11).

𝑈𝑉 =

⎧

⎪

⎨

⎪

⎩

𝑅𝑝 × 𝑅𝑤𝑉

1∕(1 + 𝑒𝑇𝑠−𝑇𝑓 )
− 𝑉

3𝑅𝑝
, If the validation is valid;

− 𝑉 , If the validation is invalid.
(11)

where 𝑅𝑝 represents the entity’s comprehensive reputation value cal-
culated based on Section 4.1. 𝑅𝑤𝑀 , 𝑅𝑤𝑉 are the base values of the
revenue earned by consensus committee nodes and validation nodes
through contribution allocation, respectively. 𝑇𝑓 and 𝑇𝑠 represent the
time of generating the transaction request and block confirmation,
respectively. 𝐾 and 𝑉 are the CareCoin pledged by the bookkeeper
(i.e., consensus committee node) and validator, respectively. It can
be seen that the revenue of a participant in a consortium chain is
closely related to its comprehensive reputation value. Additionally,
after mapping via the sigmoid function, 𝑇𝑓 − 𝑇𝑠 falls within the (0.5, 1)
interval. In this context, a smaller value results in a higher gain. This
promotes faster block consensus and validation, reducing transaction
time. Regarding maintenance costs, coefficients 𝐾∕2𝑅𝑝 and 𝑉 ∕3𝑅𝑝
mean that higher reputation leads to lower CareCoin pledges, and
consensus participation costs more than validation.

5. Security and theoretical analysis

This section provides a security and theoretical analysis of the
proposed BtRaI based on the threat model and design goals. We also
compare BaRaI with related work. The details are analyzed below.

(1) Defending against false reputation assessment attacks
In the case of false assessment attacks, including collusion attacks,

the impact of these false evaluations is mitigated by introducing a
credibility factor into the evaluators’ assessment process.

Taking the reputation assessment process of HC by PnF
as an example, the credibility factor calculation 𝑃𝑐𝑟𝜏𝑖𝑘 = 1 −
√

(𝑃𝑟𝜏𝑖𝑘 − (
∑𝑛′

𝑗=1 𝑃𝑟
𝜏
𝑗𝑘)∕𝑛

′)
2

in Eq. (2) reveals that a rating’s credibility

degree 𝑃𝑐𝑟𝜏𝑗𝑘 inversely relates to how much it deviates from the
average rating. Therefore, for a given evaluated entity, if the majority
of evaluators are honest and their scores are consistent, any false
rating significantly deviating from reality will have reduced credibility.
According to 𝑃𝑅𝜏

𝐻𝐶𝑘
= (

∑𝑛′
𝑖=1 𝑃𝑐𝑟

𝜏
𝑖𝑘 × 𝑃𝑟𝜏𝑖𝑘)∕𝑛

′ in Eq. (3), it can be
inferred that false scores have lower weight in the final reputation
assessment calculation.

Additionally, when a specific type of entity is infiltrated with false
assessments, dishonesty can be mitigated by employing multidimen-
sional constraints and adjusting the score weight for that entity. For
example, when calculating HC reputation 𝑅𝑡+1

𝐻𝐶𝑘
= (1 − 𝛾)𝑅𝑡

𝐻𝐶𝑘
+

𝛾(𝛼1𝑃𝑅𝜏
𝐻𝐶𝑘

+ 𝛼2𝐻𝑅𝜏
𝐻𝐶𝑘

+ 𝛼3𝐶𝑅𝜏
𝐻𝐶𝑘

+ 𝛼4𝐵𝑅𝜏
𝐻𝐶𝑘

), some PnFs may assign
scores that inaccurately represent the actual situation. To mitigate
the influence of false assessments, BtRaI employs a multidimensional
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Table 1
Comparative analysis of BtRaI with existing related work.

Scheme Chain type Reputation assessment Consensus
improvement

Incentive method

[21] Private chain × × Bonus rewards
[19] Consortium chain × × Revenue distribution
[22] Consortium chain × × Revenue distribution
[23] Public chain × × Token rewards
[24] Consortium chain Single dimensional × Reputation assessment +

Service delivery rate
BtRaI Consortium chain Multidimensional ✓ Reputation assessment +

Token reward and punishment
reputation calculation mechanism, integrating the HC’s historical repu-
tation, assessments from other HCs and the CSP, and consortium chain
maintenance scores. Moreover, the score weight assigned to the PnF
group (i.e., 𝛼1) in the final comprehensive reputation calculation can
be correspondingly reduced.

Therefore, BtRaI achieves robustness in the assessment process
through multifactor moderation and multidimensional constraints. Con-
sequently, malicious assessments, including collusion attacks, are sup-
pressed. Hence, the first design goal is fulfilled.

(2) Defending against short-term honest service attacks and tempo-
rary malicious attacks

Robustness against short-term honest service attacks and temporary
malicious attacks is achieved by measuring historical reputation impact
and employing an adaptively varying reputation learning factor 𝛾.

Specifically, the reputation learning factor 𝛾 determines how much
the new reputation value will affect the historical reputation. Taking
the HC comprehensive reputation calculation at the moment 𝑡+1 as an
example, i.e., 𝑅𝑡+1

𝐻𝐶𝑘
= (1−𝛾)𝑅𝑡

𝐻𝐶𝑘
+𝛾(𝛼1𝑃𝑅𝜏

𝐻𝐶𝑘
+𝛼2𝐻𝑅𝜏

𝐻𝐶𝑘
+𝛼3𝐶𝑅𝜏

𝐻𝐶𝑘
+

𝛼4𝐵𝑅𝜏
𝐻𝐶𝑘

) in Eq. (6). Let the comprehensive score of the current perfor-
mance obtained at the moment 𝑡+1 be 𝑅𝐶 𝑡+1

𝐻𝐶𝑘
= 𝛼1𝑃𝑅𝜏

𝐻𝐶𝑘
+𝛼2𝐻𝑅𝜏

𝐻𝐶𝑘
+

𝛼3𝐶𝑅𝜏
𝐻𝐶𝑘

+ 𝛼4𝐵𝑅𝜏
𝐻𝐶𝑘

. Therefore, 𝑅𝑡+1
𝐻𝐶𝑘

= (1 − 𝛾)𝑅𝑡
𝐻𝐶𝑘

+ 𝛾𝑅𝐶 𝑡+1
𝐻𝐶𝑘

. When
𝛾 approaches 0, it indicates that reputation assessment results found
from the current moment will be disregarded; when 𝛾 approaches 1,
it indicates that reputation assessment results derived from historical
experience will be disregarded.

In BtRaI, the learning rate 𝛾 dynamically adjusts. It decreases when
the current reputation 𝑅𝐶 𝑡+1

𝐻𝐶𝑘
exceeds the historical reputation 𝑅𝑡

𝐻𝐶𝑘
,

thereby moderating the pace of reputation improvement to discourage
attackers from boosting their long-term reputation through short-term
honest behavior. Conversely, if the current reputation falls below the
historical level, 𝛾 increases, hastening the decline in reputation to
penalize sporadic malicious behavior by attackers.

(3) Defending against Byzantine attacks
In the reputation-based RPBFT consensus mechanism, 𝑐_𝑛𝑢𝑚 nodes

with higher reputation become consensus committee nodes and com-
plete the PBFT consensus process, with a complexity of 𝑂(𝑐_𝑛𝑢𝑚2).
The system can tolerate up to ⌊(𝑐_𝑛𝑢𝑚 − 1∕3)⌋ faulty or malicious
nodes. The remaining 𝑁 − 𝑐_𝑛𝑢𝑚 nodes serve as validators, and if
more than half of the validation nodes are honest, the result is con-
sidered valid. Therefore, a maximum of ⌊(𝑁 − 𝑐_𝑛𝑢𝑚)∕2⌋ faulty or
malicious validators are permissible. Thus, RPBFT’s maximum fault
tolerance is ⌊(3𝑁 − 𝑐_𝑛𝑢𝑚 − 1)∕6⌋, exceeding the original PBFT’s by
⌊(𝑁 − 𝑐_𝑛𝑢𝑚 + 1)∕6⌋. Moreover, due to the dynamic replacement method
of consensus committee nodes and the reputation penalty for invalid
consensus nodes, it can encourage long-term high-reputation nodes to
become consensus committee nodes and prime candidates. This ap-
proach effectively reduces failure and malicious rates in the consensus
process.

Thus, through the analysis of (2) and (3), it can be concluded
that BtRaI is capable of providing trusted and practical reputation
assessment, thereby fulfilling the second design goal.
65
(4) Effectiveness of incentive mechanism
The reputation-based incentive mechanism distributes token re-

wards and penalties to promote honest participation in the consensus
and validation processes, which can effectively improve blockchain
efficiency and reduce failures and errors. Additionally, the degree of
these rewards and penalties drives nodes to continually improve their
performance within the healthcare service system, aiming for a higher
reputation and greater token reward. During medical data diagnosis
and sharing services, the token pledged value is inversely proportional
to the reputation value, encouraging participants to engage honestly
and actively in medical consultation, data sharing, and service pro-
vision. This creates a beneficial cycle linking reputation and token
incentives.

Furthermore, regarding reputation and token rewards and penalties
with differentiation, we will specifically demonstrate it in the exper-
iments to further illustrate that BtRaI satisfies the third design goal,
i.e., effective differentiation in reward and punishment mechanisms.

(5) Resilience against other attacks
Within the consortium blockchain that strictly scrutinizes partici-

pant user identities, common attacks from untrusted and unauthorized
third parties, like identity forgery, are prevented from affecting the
BtRaI system.

In BtRaI’s transactional interactions, measures are in place to pre-
vent malicious participants from broadcasting already verified transac-
tions or blocks, thus averting replay attacks. This is achieved through
the use of unique timestamps and nonce values in the blockchain’s
transaction structure.

Moreover, each user’s private key is used to sign transaction infor-
mation, which is then published on the blockchain with the transaction
details, including timestamps, further preventing replay attacks. In
the case of repudiation attacks, where a participant denies a transac-
tion, the signer’s identity can be confirmed by revealing the public
key associated with their private key, ensuring accountability for the
transaction. In addition to the utilization of digital signature technol-
ogy within the blockchain, the incorporation of secure hash functions
further enhances BtRaI’s resilience against tampering attacks.

Besides, BtRaI’s admission and token collateralization mechanisms,
tying tokens to economic incentives, serve as a barrier against dis-
tributed denial-of-service (DDoS) attacks. The RPBFT’s consensus com-
mittee node selection and rotation mechanism also reduce the risk of
51% attacks by limiting and dynamically changing the subset of nodes
participating in the consensus process.

(6) Comparison with related schemes
Further, we theoretically compare the proposed BtRaI scheme with

other blockchain-based incentive mechanisms for healthcare services
in Table 1. As shown in the table, most schemes use consortium chains
or even private chains to restrict access from unauthorized users [37].
However, existing healthcare service incentive mechanisms are less
likely to incorporate multidimensional reputation assessment methods
and lack feedback facilitation for consensus mechanisms. In contrast,
BtRaI records reputation assessment results on the consortium chain
in a tamper-evident manner. Additionally, it establishes a beneficial
cycle linking multidimensional reputation assessment, the improved
consensus algorithm, and the incentive mechanism.



Future Generation Computer Systems 154 (2024) 59–71Y. Liu et al.

𝛾
h
r
a
o
c
w
r
P

𝛽
𝛽
t

6. Experimental analysis

To evaluate the BtRaI proposed in this paper, we conducted simula-
tion experiments using Python over Windows 11 on Intel(R) Core(TM)
i7-12700H 2.30 GHz 16G RAM. The multi-entity multidimensional
comprehensive reputation assessment, reputation-based RPBFT consen-
sus algorithm, and reputation-based incentive mechanism proposed in
this paper were evaluated, respectively.

6.1. Reputation assessment results

The parameter settings for the reputation assessment section are
shown in Table 2, including some values that need to be dynamically
adjusted for comparison during evaluation. We assume that each con-
sortium blockchain consists of 50 patient groups, 6 healthcare centers,
and 1 cloud service platform. The gap modifier factor 𝜔 is set to the
default normal level of 1, and the initialized learning factors 𝛾 are
1 = 0.6 and 𝛾2 = 0.4. To emphasize the importance of providing
igh-quality services to PnFs, the weights in the HC comprehensive
eputation calculation are assigned as follows: 0.4 for PnF assessments,
nd 0.2 each for HC, CSP assessments, and maintenance performance
n the consortium chain. Similarly, in the comprehensive reputation
alculation of CSP, the importance of PnF assessment is emphasized,
ith 𝛿1 = 0.5. To explore the impact of weights factors on the final

eputation assessment, in the comprehensive reputation calculation of
nF, three weight factors, 𝛽1, 𝛽2, and 𝛽3, are varied between 0.1, 0.3,

and 0.6 to form different combinations. Additionally, the learning rate
factors, 𝛾1 and 𝛾2, are varied to investigate the effect of their varying
gaps on the comprehensive reputation assessment.

Experiments on comprehensive reputation assessment in multiple
scenarios follow.

(1) We use the results of HC’s comprehensive reputation assessment
to illustrate the changes in reputation for both normal service scenarios
and scenarios with partial malicious service. Firstly, in the normal
scenario, the set comprehensive reputation ranking is HC1, HC5, HC6,
HC2, HC4, and HC3, as shown in Fig. 4. It can be seen that the set
reputation of HC1-HC6 is maintained steadily around 0.96, 0.84, 0.74,
0.82, 0.88, and 0.88, respectively.

Based on this reputation assessment, we analyze a complex and
dynamic change scenario. Specifically, HC1 starts displaying mali-
cious behavior after 50 rounds of improved performance, leading to a
drop in ratings and becoming a validation node with block validation
misbehavior after 70 rounds. HC3 temporarily improves performance
in rounds 40–49 for a higher score, then reverts to usual behavior.
HC4 engages in block validation misbehavior, then normalizes. HC5
improves the quality of service after 50 rounds, enhancing scores. HC2
and HC6 consistently maintain normal behavior.

Fig. 5(a) shows the comprehensive reputation changes of HCs, and
Fig. 5(b) compares the effects of the scheme [38] that combines the
sigmoid function in the final reputation assessment. We observed that
our scheme and Hu et al.’s scheme [38] are effective in quickly reducing
the reputation of nodes engaging in malicious behavior, such as HC1
and HC4, mirroring the significant real-world impact of such actions.
However, for nodes showing positive behavior, like HC3 and HC5, the
sigmoid-based scheme [38] offers a quicker reputation increase. Our
BtRaI scheme, with its dynamically changing learning rate, provides
a more gradual reputation growth and finer differentiation between
nodes, aligning closely with real-world dynamics.

(2) Using the reputation calculation results of PnF as an example,
Fig. 6 shows the current comprehensive reputation assessment results
under different weight distributions, with 𝐻𝑅𝑃𝑛𝐹 , 𝐶𝑅𝑃𝑛𝐹 , 𝐵𝑅𝑃𝑛𝐹 , and
𝑅𝑡
𝑃 𝑛𝐹 scores of 0.88, 0.98, 0.5, and 0.9. The weight distributions are

𝛽1 = 0.6, 𝛽2 = 0.1, 𝛽3 = 0.3 (denoted as 6𝛽1, 1𝛽2, 3𝛽3); 𝛽1 = 0.3,
2 = 0.6, 𝛽3 = 0.1 (denoted as 3𝛽1, 6𝛽2, 1𝛽3); and 𝛽1 = 0.1, 𝛽2 = 0.3,
3 = 0.6 (denoted as 1𝛽1, 3𝛽2, 6𝛽3). In Fig. 6, the bar chart represents
66

he scores of each sub-assessment item, and the line graph illustrates
Table 2
Reputation assessment parameter setting.

Parameter Value Parameter Value

𝑛, 𝑚 50, 6 𝛽1 , 𝛽2 , 𝛽3 (variable) [0.1,0.3,0.6]
𝜔 1 𝛿1 , 𝛿2 , 𝛿3 0.5,0.2,0.3
𝛾1 , 𝛾2 0.6, 0.4 𝛾1 (variable) [0.9,0.7,0.5]
𝛼1 , 𝛼2 , 𝛼3 , 𝛼4 0.4, 0.2, 0.2, 0.2 𝛾2 (variable) [0.1,0.3,0.4]

Fig. 4. HC comprehensive reputation assessment results.

Fig. 5. Comparison of HC comprehensive reputation under dynamic changes in
behavior.

the comprehensive reputation results obtained under different weight
distributions. Fig. 6 illustrates that, due to the dynamic adjustment
of historical reputation 𝑅𝑡

𝑃 𝑛𝐹 and the learning rate factor 𝛾, the final
results tend to converge around 𝑅𝑡

𝑃 𝑛𝐹 , exhibiting a preference for
components with greater weights in the reputation calculation.

Fig. 7 compares the variation curves of PnF reputation over time in
three different cases, each based on the previously described weight
distributions. The fundamental assumption is that the score derived
from CSP is higher than that derived from HC, and both score intervals
exhibit stability. However, given that PnF occurs randomly in the
consortium chain with correct and incorrect validation, the perfor-
mance score of CB experiences fluctuations. As shown in Fig. 7, the
larger decrease in scores for the weight distributions of ‘‘6𝛽1, 1𝛽2, 3𝛽3’’

and ‘‘1𝛽1, 3𝛽2, 6𝛽3’’ is due to the occurrence of PnF block validation
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Fig. 6. Results of PnF reputation assessment with different weight distributions.

Fig. 7. Changes in the comprehensive reputation of PnF under different weight
istributions.

rrors, with a higher proportion of scores being allocated to 𝐻𝑅𝑃𝑛𝐹
and 𝐵𝑅𝑃𝑛𝐹 in the comprehensive reputation assessment. In contrast,
‘‘3𝛽1, 6𝛽2, 1𝛽3’’ has the smallest weight for 𝐵𝑅𝑃𝑛𝐹 and the largest weight
for 𝐶𝑅𝑃𝑛𝐹 , resulting in greater stability and the highest score.

(3) Taking the reputation assessment results of CSP as an example,
Fig. 8 shows the effect of adjusting the learning rate parameter on
the final reputation calculation. The CSP is evaluated based on two
scenarios with high and low initial reputations. The CSP scores higher
𝑃𝑅𝐶𝑆𝑃 , 𝐻𝑅𝐶𝑆𝑃 , and 𝐵𝑅𝐶𝑆𝑃 during the periods 0–20, 40–60, and 80–
100, but scores lower in the 20–40 and 60–80 intervals due to poorer
performance. The learning rate factor 𝛾 is varied across three different
combinations: 𝛾1 = 0.9, 𝛾2 = 0.1 (denoted as 𝛾9-1), 𝛾1 = 0.7, 𝛾2 = 0.3
(denoted as 𝛾7-3), and 𝛾1 = 0.5, 𝛾2 = 0.4 (denoted as 𝛾5-4).

In Fig. 8, the vertical axis on the left represents the comprehensive
reputation values of the CSP reputation change curve under three com-
binations of learning rate factors. The right vertical axis corresponds
to specific 𝛾 values per time slot, but only the 𝛾9-1 combination is
shown for clarity. As shown, 𝛾 takes on the value of 𝛾2 for most of
the time, indicating that the current comprehensive score is higher
than the historical reputation score, especially in phases of good per-
formance and rising reputation. From the comparison of the three
curves, we observe that as the gap between 𝛾1 and 𝛾2 increases, the rate
of reputation enhancement in the rising stage gradually slows down.
Specifically, in the 𝛾9-1 case, the outcome more accurately reflects
real-world reputation dynamics, where positive behavior slowly builds
reputation while negative behavior rapidly diminishes it. Therefore,
we suggest widening the gap between 𝛾1 and 𝛾2 for a more realistic
representation.

(4) Furthermore, we evaluated the effectiveness of the BtRaI scheme
in resisting collusion attacks. Specifically, we examined a scenario
where HC3 and some PnFs colluded, exchanging high assessments and
unfairly lowering HC1’s ratings. To launch the collusion attack more
stealthily, HC3 assessed HC1 normally. The experimental results for this
scenario are presented in Fig. 9.

Fig. 9(a) illustrates that collusion attacks have a more significant
impact on the average assessment score 𝑃𝑅𝐻𝐶 derived from PnFs.
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In the scenario where the vast majority of PnFs collude with HC3,
Table 3
Average transaction latency of RPBFT against PBFT (s).
𝑁 = 𝑛 + 𝑚 + 1 RPBFT-1 RPBFT-2 RPBFT-3 PBFT

4 0.011 0.013 0.013 0.013
10 0.015 0.024 0.015 0.051
20 0.024 0.049 0.040 0.148
30 0.038 0.054 0.084 0.302
40 0.058 0.087 0.159 0.579
50 0.087 0.118 0.214 0.849
60 0.111 0.151 0.328 2.316
70 0.144 0.213 0.453 3.325
80 0.160 0.262 0.560 6.759
90 0.234 0.322 0.733 9.482
100 0.281 0.465 3.025 11.607

HC1’s 𝑃𝑅𝐻𝐶 scores are severely impacted, becoming lower than HC3’s
𝑃𝑅𝐻𝐶 . However, as shown in Fig. 9(b), our BtRaI scheme is resilient
to such attacks, resulting in a higher reputation score for HC1 and a
lower reputation score for HC3, despite collusion attempts by most PnFs
with HC3. This resilience stems from the scheme’s integration of scores
from peer HCs, the CSP, consortium chain maintenance, and historical
reputation, effectively countering collusive PnF ratings. Furthermore,
if similar attacks are detected over time, the influence of malicious
assessment groups can be mitigated by reducing the 𝛼1 weight assigned
to PnFs.

In summary, BtRaI’s multidimensional comprehensive reputation
assessment method, based on multifactor moderation, is capable of
resisting various threats such as long-term malicious service attacks,
short-term honest service attacks, and collusion attacks. It achieves
trusted and practical reputation assessment, aligning with real-world
application needs.

6.2. RPBFT efficiency

To simulate the implementation of RPBFT, we utilized multi-
threaded concurrency to simulate different nodes and employed Socket
communication to simulate network communication between
blockchain nodes. We conducted several experiments to compare the
efficiency of the reputation-based RPBFT consensus algorithm with the
PBFT algorithm. In these experiments, we varied 𝑁 = 𝑛+𝑚+1 and 𝑐_𝑛𝑢𝑚
dynamically. Specifically, the consortium chain nodes 𝑁 were assigned
values in the range of [4, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. In
RPBFT, if 𝑐_𝑛𝑢𝑚 ≤ 10, make 𝑐_𝑛𝑢𝑚 equal to 4. For larger networks,
𝑐_𝑛𝑢𝑚 is calculated as 4 + ⌊(𝑁 − 10)∕4⌋ for RPBFT-1, 4 + ⌊(𝑁 − 10)∕3⌋
or RPBFT-2, and 4 + ⌊(𝑁 − 10)∕2⌋ for RPBFT-3.

The time from a client’s transaction submission to the completion
f its block’s writing to the blockchain by all nodes is defined as the
ransaction completion process, termed as transaction delay or block
eneration time. Fig. 10 and Table 3 present experimental comparisons
f the average transaction latency of RPBFT and PBFT for different

values. Meanwhile, Fig. 11 and Table 4 measure network traffic,
uantified by message exchanges among nodes, comparing RPBFT and
BFT for different 𝑁 values.

Fig. 10 and Table 3 demonstrate that transaction latency increases
s the number of consortium chain nodes 𝑁 rises. PBFT’s performance
ignificantly drops at larger node scales, averaging 11.607 s for block
onsensus at 𝑁 = 100. In contrast, RPBFT consistently shows lower
ransaction latency than PBFT across all 𝑐_𝑛𝑢𝑚 settings. As 𝑐_𝑛𝑢𝑚 in-
reases, RPBFT’s transaction latency grows faster with 𝑁 . At 𝑁 = 100,
PBFT-3 takes 3.025 s for block generation, whereas RPBFT-1 and
PBFT-2 complete the block consensus and validation in under 0.5 s.

Fig. 11 and Table 4 demonstrate that communication overhead
ncreases as the number of participating nodes increases. PBFT shows
rapidly increasing communication trend, hitting 3000 internode ex-

hanges before 𝑁 = 50. In contrast, RPBFT-3 exceeds 3000 exchanges
nly after 𝑁 = 90. RPBFT-1 and RPBFT-2 exhibit the lowest com-
unication overhead and growth. Notably, RPBFT-1 maintains a low
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Fig. 10. Change in average transaction latency.

Fig. 11. Change in average communication overhead.

verhead of around 1000 internode message exchanges even at 𝑁 =
100.

Since RPBFT selects consensus committees based on high repu-
tation, 𝑐_𝑛𝑢𝑚 remains within a narrow range. Therefore, the high-
performance RPBFT-1 and RPBFT-2 models are well-suited to the prac-
tical needs of our proposed healthcare service system based on reputa-
68

tion assessment. e
Table 4
Average communication overhead of RPBFT against PBFT (times).
𝑁 = 𝑛 + 𝑚 + 1 RPBFT-1 RPBFT-2 RPBFT-3 PBFT

4 33 33 33 33
10 41 39 40 165
20 73 100 131 606
30 138 190 311 1263
40 214 316 588 2389
50 333 467 850 3659
60 451 644 1261 5155
70 600 856 1781 7375
80 684 1069 2207 9170
90 882 1347 2866 11 212
100 1074 1803 3418 14 480

6.3. Service incentive effect

The fundamental parameters of the incentive mechanism for health-
care services are shown in Table 5. The base profit values for consensus
committee nodes serving as Leaders, 𝑅𝑤𝑀 (Leader), are set to 4, while
for other consensus committee nodes, 𝑅𝑤𝑀 (Others), it is set to 3. The
base profit value for validation nodes, 𝑅𝑤𝑉 , is set to 2. The required
CareCoin pledged for bookkeepers and validators in a consensus round
is 10 and 5, respectively. The block generation time interval, 𝑇𝑓 − 𝑇𝑠,
anges from 0.01 to 3.03 s.

To illustrate the incentive effect of HC participation in the con-
ortium chain, we consider the scenario where: (1) ‘Normal’ HC1
lways has a high reputation, while ‘abnormal’ HC1 sees a reputation
ecline post-50th round and block validation error post-70th round. (2)
he normal HC6 and HC3 have decreasing reputations in order, but
C6 starts enhancing its reputation post-50th round and participates

n block generation honestly. (3) Normal nodes in the consortium
hain consistently generate valid consensus and validation results. Each
ime slot completes a round of block consensus and validation in this
xperiment.
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Table 5
Basic parameter setting of incentive mechanism.

Parameter Value

𝑅𝑤𝑀 (Leader), 𝑅𝑤𝑀 (Others), 𝑅𝑤𝑉 4, 3, 2
𝐾, 𝑉 10, 5
𝑇𝑓 − 𝑇𝑠 (0.01, 3.03)

Fig. 12. Variation of Carecoin in incentives.

Fig. 12 shows the variation in Carecoin accumulation by different
ntities across 100 rounds, starting from 0. The accumulation for enti-
ies like HC1, HC6, and HC3 reflects their reputation levels, with HC1
high reputation) accumulating about 500 more Carecoins than HC3
low reputation) after 100 rounds. The significant disparity between
igh-reputation consensus nodes and low-reputation validation nodes
erves as a stronger incentive for active and honest participation in
ealthcare services, encouraging entities to strive for consensus node
tatus for better revenue.

In particular, a reduced HC1_abnormal reputation results in slower
arecoin accumulation. Its validation misbehavior after 70 rounds

urther reduces Carecoin as a penalty. On the other hand, HC6_better,
ith a higher reputation after 50 rounds, shows an initial slow increase

n Carecoin accumulation, accelerating after becoming a consensus
ode. It is observed that nodes with high reputation lose reputation
nd Carecoin upon malicious behavior (trend 1), while those with
ow reputation gain higher reputation and more Carecoin for good
erformance (trend 2). Trend 1 is more pronounced than trend 2,
eflecting real-world scenarios where good behavior needs sustained
emonstration while malicious behavior are quickly penalized.

. Conclusion

In this paper, we propose a healthcare service incentive mechanism
ased on blockchain and trusted reputation assessment to motivate all
articipants in the healthcare service system. We use multidimensional
omprehensive reputation assessment method with multifactor mod-
ration to calculate reputation scores that are resistant to malicious
ehavior. Using the reputation assessment results, we design a highly
ault-tolerant and efficient consensus mechanism, RPBFT. We also in-
roduce a reputation-related token reward and punishment incentive
echanism to promote system stability and active entity participation.
heoretical analyses and extensive experimental evaluations show that
he proposed BtRaI is well-suited for incentivizing healthcare services
n dynamic and complex scenarios.

In the future, we will explore practical applications in real health-
are environments, as well as simulate attack scenarios and collect
ctual operational data to evaluate and improve BtRaI, responding
o more increasingly complex scenarios and evolving service require-
ents.

RediT authorship contribution statement

Yanhua Liu: Conceptualization, Funding acquisition, Methodology,
riting – review & editing. Zhihuang Liu: Data curation, Formal analy-

sis, Methodology, Software, Validation, Writing – original draft, Writing
69
– review & editing. Qiu Zhang: Data curation, Investigation, Writing –
eview & editing. Jinshu Su: Supervision, Validation, Writing – review

& editing. Zhiping Cai: Funding acquisition, Supervision, Validation,
Writing – review & editing. Xiaoyan Li: Funding acquisition, Writing
– review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work is supported by the National Key Research and Devel-
opment Program of China (2022YFF1203001), the National Natural
Science Foundation of China (Grant No. 62072109, No. 62002062, and
No. U1804263), the Natural Science Foundation of Fujian Province,
China (Grant No. 2021J01625, No. 2021J01616, and No. 2022J05029),
and the Major Science and Technology project of Fujian Province,
China (Grant No. 2021HZ022007). The authors would like to thank the
editor-in-chief, editor, and reviewers for their valuable comments and
suggestions.

References

[1] M. Adil, J. Ali, M.M. Jadoon, S.A. Otaibi, N. Kumar, A. Farouk, H. Song,
COVID-19: secure healthcare internet of things networks, current trends and
challenges with future research directions, ACM Trans. Sens. Netw. 19 (3) (2023)
54:1–54:25, http://dx.doi.org/10.1145/3558519.

[2] S. Wang, H. Wang, J. Li, H. Wang, J. Chaudhry, M. Alazab, H. Song, A fast CP-
ABE system for cyber-physical security and privacy in mobile healthcare network,
IEEE Trans. Ind. Appl. 56 (4) (2020) 4467–4477, http://dx.doi.org/10.1109/TIA.
2020.2969868.

[3] J.A.A. Alzubi, Blockchain-based Lamport Merkle Digital Signature: Authenti-
cation tool in IoT healthcare, Comput. Commun. 170 (2021) 200–208, http:
//dx.doi.org/10.1016/j.comcom.2021.02.002.

[4] M. Majhi, A.K. Pal, J. Pradhan, S.H. Islam, M.K. Khan, Computational intelligence
based secure three-party CBIR scheme for medical data for cloud-assisted
healthcare applications, Multimedia Tools Appl. 81 (29) (2022) 41545–41577,
http://dx.doi.org/10.1007/s11042-020-10483-7.

[5] A.P. Singh, N.R. Pradhan, A.K. Luhach, S. Agnihotri, N.Z. Jhanjhi, S. Verma,
Kavita, U. Ghosh, D.S. Roy, A novel patient-centric architectural framework
for blockchain-enabled healthcare applications, IEEE Trans. Ind. Inform. 17 (8)
(2021) 5779–5789, http://dx.doi.org/10.1109/TII.2020.3037889.

[6] J.A.A. Alzubi, O.A. Alzubi, A. Singh, M. Ramachandran, Cloud-IIoT-based elec-
tronic health record privacy-preserving by CNN and blockchain-enabled federated
learning, IEEE Trans. Ind. Inform. 19 (1) (2023) 1080–1087, http://dx.doi.org/
10.1109/TII.2022.3189170.

[7] M.A. Jan, F. Khan, S. Mastorakis, M. Adil, A. Akbar, N. Stergiou, LightIoT:
Lightweight and secure communication for energy-efficient IoT in health in-
formatics, IEEE Trans. Green Commun. Netw. 5 (3) (2021) 1202–1211, http:
//dx.doi.org/10.1109/TGCN.2021.3077318.

[8] M.S. Rahman, M.A. Islam, M.A. Uddin, G. Stea, A survey of blockchain-based
IoT eHealthcare: Applications, research issues, and challenges, Internet Things
19 (2022) 100551, http://dx.doi.org/10.1016/j.iot.2022.100551.

[9] H.M. Hussien, S.M. Yasin, N.I. Udzir, M.I.H. Ninggal, S. Salman, Blockchain
technology in the healthcare industry: Trends and opportunities, J. Ind. Inf.
Integr. 22 (2021) 100217, http://dx.doi.org/10.1016/j.jii.2021.100217.

[10] J. Xu, K. Xue, S. Li, H. Tian, J. Hong, P. Hong, N. Yu, Healthchain: A blockchain-
based privacy preserving scheme for large-scale health data, IEEE Internet Things
J. 6 (5) (2019) 8770–8781, http://dx.doi.org/10.1109/JIOT.2019.2923525.

[11] J. Su, L. Zhang, Y. Mu, BA-RMKABSE: blockchain-aided ranked multi-keyword
attribute-based searchable encryption with hiding policy for smart health system,
Future Gener. Comput. Syst. 132 (2022) 299–309, http://dx.doi.org/10.1016/j.

future.2022.01.021.

http://dx.doi.org/10.1145/3558519
http://dx.doi.org/10.1109/TIA.2020.2969868
http://dx.doi.org/10.1109/TIA.2020.2969868
http://dx.doi.org/10.1109/TIA.2020.2969868
http://dx.doi.org/10.1016/j.comcom.2021.02.002
http://dx.doi.org/10.1016/j.comcom.2021.02.002
http://dx.doi.org/10.1016/j.comcom.2021.02.002
http://dx.doi.org/10.1007/s11042-020-10483-7
http://dx.doi.org/10.1109/TII.2020.3037889
http://dx.doi.org/10.1109/TII.2022.3189170
http://dx.doi.org/10.1109/TII.2022.3189170
http://dx.doi.org/10.1109/TII.2022.3189170
http://dx.doi.org/10.1109/TGCN.2021.3077318
http://dx.doi.org/10.1109/TGCN.2021.3077318
http://dx.doi.org/10.1109/TGCN.2021.3077318
http://dx.doi.org/10.1016/j.iot.2022.100551
http://dx.doi.org/10.1016/j.jii.2021.100217
http://dx.doi.org/10.1109/JIOT.2019.2923525
http://dx.doi.org/10.1016/j.future.2022.01.021
http://dx.doi.org/10.1016/j.future.2022.01.021
http://dx.doi.org/10.1016/j.future.2022.01.021


Future Generation Computer Systems 154 (2024) 59–71Y. Liu et al.
[12] Z. Wang, N. Luo, P. Zhou, GuardHealth: Blockchain empowered secure data
management and Graph Convolutional Network enabled anomaly detection in
smart healthcare, J. Parallel Distrib. Comput. 142 (2020) 1–12, http://dx.doi.
org/10.1016/j.jpdc.2020.03.004.

[13] O.A. Alzubi, J.A.A. Alzubi, K. Shankar, D. Gupta, Blockchain and artificial
intelligence enabled privacy-preserving medical data transmission in Internet of
Things, Trans. Emerg. Telecommun. Technol. 32 (12) (2021) http://dx.doi.org/
10.1002/ett.4360.

[14] G.K. Verma, B.B. Singh, N. Kumar, O. Kaiwartya, M.S. Obaidat, PFCBAS:
pairing free and provable certificate-based aggregate signature scheme for the
e-healthcare monitoring system, IEEE Syst. J. 14 (2) (2020) 1704–1715, http:
//dx.doi.org/10.1109/JSYST.2019.2921788.

[15] G. Dong, Y. Chen, J. Fan, D. Liu, Y. Hao, Z. Wang, A privacy-user-friendly
scheme for wearable smart sensing devices based on blockchain, in: 15th IEEE
International Conference on Mobile Ad Hoc and Sensor Systems, MASS 2018,
Chengdu, China, October 9-12, 2018, IEEE Computer Society, 2018, pp. 481–486,
http://dx.doi.org/10.1109/MASS.2018.00073.

[16] G. Wu, S. Wang, Z. Ning, B. Zhu, Privacy-preserved electronic medical record
exchanging and sharing: A blockchain-based smart healthcare system, IEEE J.
Biomed. Health Inform. 26 (5) (2022) 1917–1927, http://dx.doi.org/10.1109/
JBHI.2021.3123643.

[17] R. Han, Z. Yan, X. Liang, L.T. Yang, How can incentive mechanisms and
blockchain benefit with each other? a survey, ACM Comput. Surv. 55 (7) (2023)
136:1–136:38, http://dx.doi.org/10.1145/3539604.

[18] R. Zhao, L.T. Yang, D. Liu, X. Deng, Y. Mo, A tensor-based truthful incen-
tive mechanism for blockchain-enabled space-air-ground integrated vehicular
crowdsensing, IEEE Trans. Intell. Transp. Syst. 23 (3) (2022) 2853–2862, http:
//dx.doi.org/10.1109/TITS.2022.3144301.

[19] L. Zhu, H. Dong, M. Shen, K. Gai, An incentive mechanism using Shapley value
for blockchain-based medical data sharing, in: 5th IEEE International Conference
on Big Data Security on Cloud, BigDataSecurity/HPSC/IDS 2019, Washington,
DC, USA, May 27-29, 2019, IEEE, 2019, pp. 113–118, http://dx.doi.org/10.1109/
BigDataSecurity-HPSC-IDS.2019.00030.

[20] P. Esmaeilzadeh, T. Mirzaei, Role of incentives in the use of blockchain-based
platforms for sharing sensitive health data: Experimental study, J. Med. Internet
Res. 25 (2023) e41805, http://dx.doi.org/10.2196/41805.

[21] C. Gan, A. Saini, Q. Zhu, Y. Xiang, Z. Zhang, Blockchain-based access control
scheme with incentive mechanism for eHealth systems: patient as supervisor,
Multimedia Tools Appl. 80 (20) (2021) 30605–30621, http://dx.doi.org/10.
1007/s11042-020-09322-6.

[22] M. Shen, J. Duan, L. Zhu, J. Zhang, X. Du, M. Guizani, Blockchain-based
incentives for secure and collaborative data sharing in multiple clouds, IEEE J.
Sel. Areas Commun. 38 (6) (2020) 1229–1241, http://dx.doi.org/10.1109/JSAC.
2020.2986619.

[23] A.T. Litchfield, A. Khan, BlockPres: A novel blockchain-based incentive mech-
anism to mitigate inequalities for prescription management system, Sensors 21
(15) (2021) 5035, http://dx.doi.org/10.3390/s21155035.

[24] S. Purohit, P. Calyam, M.L. Alarcon, N.R. Bhamidipati, A.S.M. Mosa, K. Salah,
HonestChain: Consortium blockchain for protected data sharing in health in-
formation systems, Peer-to-Peer Netw. Appl. 14 (5) (2021) 3012–3028, http:
//dx.doi.org/10.1007/s12083-021-01153-y.

[25] S. Wang, D. Ye, X. Huang, R. Yu, Y. Wang, Y. Zhang, Consortium blockchain for
secure resource sharing in vehicular edge computing: A contract-based approach,
IEEE Trans. Netw. Sci. Eng. 8 (2) (2021) 1189–1201, http://dx.doi.org/10.1109/
TNSE.2020.3004475.

[26] L. Vishwakarma, D. Das, SmartCoin: A novel incentive mechanism for vehicles in
intelligent transportation system based on consortium blockchain, Veh. Commun.
33 (2022) 100429, http://dx.doi.org/10.1016/j.vehcom.2021.100429.

[27] Z. Noshad, A.U. Khan, S. Abbas, Z. Abubaker, N. Javaid, M. Shafiq, J. Choi,
An incentive and reputation mechanism based on blockchain for crowd sensing
network, J. Sens. 2021 (2021) 1798256:1–1798256:14, http://dx.doi.org/10.
1155/2021/1798256.

[28] E.K. Wang, Z. Liang, C. Chen, S. Kumari, M.K. Khan, PoRX: A reputation
incentive scheme for blockchain consensus of IIoT, Future Gener. Comput. Syst.
102 (2020) 140–151, http://dx.doi.org/10.1016/j.future.2019.08.005.

[29] Y. Yi, Y. Yang, K. Cheng, Y. Wu, X. Wang, Information dissemination with
service-oriented incentive mechanism in Industrial Internet of Things, IEEE
Internet Things J. 9 (18) (2022) 16897–16907, http://dx.doi.org/10.1109/JIOT.
2022.3147840.

[30] G. Zhang, H. Jacobsen, Prosecutor: an efficient BFT consensus algorithm with
behavior-aware penalization against Byzantine attacks, in: K. Zhang, A. Gherbi,
N. Venkatasubramanian, L. Veiga (Eds.), Middleware ’21: 22nd International
Middleware Conference, Québec City, Canada, December 6 - 10, 2021, ACM,
2021, pp. 52–63, http://dx.doi.org/10.1145/3464298.3484503.
70
[31] G. Xu, H. Bai, J. Xing, T. Luo, N.N. Xiong, X. Cheng, S. Liu, J.X. Zheng, SG-PBFT:
A secure and highly efficient distributed blockchain PBFT consensus algorithm
for intelligent Internet of vehicles, J. Parallel Distrib. Comput. 164 (2022) 1–11,
http://dx.doi.org/10.1016/j.jpdc.2022.01.029.

[32] M. Rezvani, A. Ignjatovic, E. Bertino, S.K. Jha, Secure data aggregation technique
for wireless sensor networks in the presence of collusion attacks, IEEE Trans.
Dependable Secur. Comput. 12 (1) (2015) 98–110, http://dx.doi.org/10.1109/
TDSC.2014.2316816.

[33] M. Wang, G. Wang, Y. Zhang, Z. Li, A high-reliability multi-faceted reputation
evaluation mechanism for online services, IEEE Trans. Serv. Comput. 12 (6)
(2019) 836–850, http://dx.doi.org/10.1109/TSC.2016.2638812.

[34] Z. Yan, X. Li, M. Wang, A.V. Vasilakos, Flexible data access control based on
trust and reputation in cloud computing, IEEE Trans. Cloud Comput. 5 (3) (2017)
485–498, http://dx.doi.org/10.1109/TCC.2015.2469662.

[35] M. Du, X. Ma, Z. Zhang, X. Wang, Q. Chen, A review on consensus algorithm
of blockchain, in: 2017 IEEE International Conference on Systems, Man, and
Cybernetics, SMC 2017, Banff, AB, Canada, October 5-8, 2017, IEEE, 2017, pp.
2567–2572, http://dx.doi.org/10.1109/SMC.2017.8123011.

[36] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, M.A. Imran, A scalable multi-layer
PBFT consensus for blockchain, IEEE Trans. Parallel Distrib. Syst. 32 (5) (2021)
1146–1160, http://dx.doi.org/10.1109/TPDS.2020.3042392.

[37] S. Nazir, M. Kaleem, H. Hamdoun, J. Alzubi, H. Tianfield, Blockchain of things
for healthcare asset management, in: V. Jain, J. Chatterjee, P. Kumar, U. Kose
(Eds.), Healthcare Monitoring and Data Analysis using IoT: Technologies and
Applications, in: Heathcare Technologies Series 38, Institution of Engineering and
Technology (IET), 2022, pp. 199–209, http://dx.doi.org/10.1049/PBHE038E_ch.

[38] Q. Hu, H. Cheng, X. Zhang, C. Lin, Trusted resource allocation based on proof-of-
reputation consensus mechanism for edge computing, Peer-to-Peer Netw. Appl.
15 (1) (2022) 444–460, http://dx.doi.org/10.1007/s12083-021-01240-0.

Yanhua Liu received his B.S. and M.S. degrees from the
College of Computer and Data Science, Fuzhou University,
China, in 1996 and 2003 respectively. He received his
Ph.D. degree from the College of Physics and Information
Engineering, Fuzhou University, China, in 2016. He is
currently working as an associate professor and researcher
at the Fujian Key Laboratory of Network Computing and
Intelligent Information Processing at Fuzhou University.
His research interests are intelligent computing, computer
security, and big data. His research work has won several
government awards.

Zhihuang Liu received his B.E. and M.S. degrees from the
College of Computer and Data Science, Fuzhou University,
in 2020 and 2023, respectively. He is currently pursuing a
Ph.D. degree in the College of Computer at the National
University of Defense Technology. His research interests
include blockchain, IoT security, and machine learning.

Qiu Zhang received his B.E. degree in Chemical Engineering
from Fuzhou University in 2022. He is now pursuing his
M.S. degree in the College of Computer and Data Science
at Fuzhou University. His research interests are machine
learning and federated learning.

Jinshu Su received the B. Sc degree in Mathematics from
Nankai University and the M.S. and Ph.D. degrees in
computer science from the National University of Defense
Technology, Changsha, China. He is a professor with the
College of Computer, National University of Defense Tech-
nology. He currently leads the Distributed Computing and
High Performance Router Laboratory and the Computer
Networks and Information Security Laboratory, which are
both key laboratories of National 211 and 985 Projects,
China. He is a CCF fellow, and he serves as the chair of the
Internet Committee of CCF. He has published more than 200
papers in international journals and conferences, including

http://dx.doi.org/10.1016/j.jpdc.2020.03.004
http://dx.doi.org/10.1016/j.jpdc.2020.03.004
http://dx.doi.org/10.1016/j.jpdc.2020.03.004
http://dx.doi.org/10.1002/ett.4360
http://dx.doi.org/10.1002/ett.4360
http://dx.doi.org/10.1002/ett.4360
http://dx.doi.org/10.1109/JSYST.2019.2921788
http://dx.doi.org/10.1109/JSYST.2019.2921788
http://dx.doi.org/10.1109/JSYST.2019.2921788
http://dx.doi.org/10.1109/MASS.2018.00073
http://dx.doi.org/10.1109/JBHI.2021.3123643
http://dx.doi.org/10.1109/JBHI.2021.3123643
http://dx.doi.org/10.1109/JBHI.2021.3123643
http://dx.doi.org/10.1145/3539604
http://dx.doi.org/10.1109/TITS.2022.3144301
http://dx.doi.org/10.1109/TITS.2022.3144301
http://dx.doi.org/10.1109/TITS.2022.3144301
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00030
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00030
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00030
http://dx.doi.org/10.2196/41805
http://dx.doi.org/10.1007/s11042-020-09322-6
http://dx.doi.org/10.1007/s11042-020-09322-6
http://dx.doi.org/10.1007/s11042-020-09322-6
http://dx.doi.org/10.1109/JSAC.2020.2986619
http://dx.doi.org/10.1109/JSAC.2020.2986619
http://dx.doi.org/10.1109/JSAC.2020.2986619
http://dx.doi.org/10.3390/s21155035
http://dx.doi.org/10.1007/s12083-021-01153-y
http://dx.doi.org/10.1007/s12083-021-01153-y
http://dx.doi.org/10.1007/s12083-021-01153-y
http://dx.doi.org/10.1109/TNSE.2020.3004475
http://dx.doi.org/10.1109/TNSE.2020.3004475
http://dx.doi.org/10.1109/TNSE.2020.3004475
http://dx.doi.org/10.1016/j.vehcom.2021.100429
http://dx.doi.org/10.1155/2021/1798256
http://dx.doi.org/10.1155/2021/1798256
http://dx.doi.org/10.1155/2021/1798256
http://dx.doi.org/10.1016/j.future.2019.08.005
http://dx.doi.org/10.1109/JIOT.2022.3147840
http://dx.doi.org/10.1109/JIOT.2022.3147840
http://dx.doi.org/10.1109/JIOT.2022.3147840
http://dx.doi.org/10.1145/3464298.3484503
http://dx.doi.org/10.1016/j.jpdc.2022.01.029
http://dx.doi.org/10.1109/TDSC.2014.2316816
http://dx.doi.org/10.1109/TDSC.2014.2316816
http://dx.doi.org/10.1109/TDSC.2014.2316816
http://dx.doi.org/10.1109/TSC.2016.2638812
http://dx.doi.org/10.1109/TCC.2015.2469662
http://dx.doi.org/10.1109/SMC.2017.8123011
http://dx.doi.org/10.1109/TPDS.2020.3042392
http://dx.doi.org/10.1049/PBHE038E_ch
http://dx.doi.org/10.1007/s12083-021-01240-0


Future Generation Computer Systems 154 (2024) 59–71Y. Liu et al.
JSAC, TVT, FGCS, MobiHoc, INFOCOM, ICDCS, etc. His cur-
rent research interests include Internet architecture, Internet
routing, security, and wireless networks.

Zhiping Cai received the B.Eng., M.A.Sc., and Ph.D. degrees
in computer science and technology from the National
University of Defense Technology (NUDT), China, in 1996,
2002, and 2005, respectively. He is a full professor in the
College of Computer, NUDT. His current research interests
include artificial intelligence, network security, and big
data. He is a senior member of the CCF and a member of
the IEEE.
71
Xiaoyan Li received her Ph.D. degree in computer science
from Soochow University, Suzhou, China, in 2019. She was
a visiting scholar in the Department of Computer Science,
the City University of Hong Kong, Hong Kong, from June
2018–June 2019. She is currently an associate professor
with the College of Computer and Data Science, Fuzhou
University, China. She has published more than 30 papers
in research-related journals and conferences, such as IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYS-
TEMS, IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE
TRANSACTIONS ON COMPUTERS, JOURNAL OF PARALLEL
AND DISTRIBUTED COMPUTING, and AAAI. She has served
at some conferences as Session Chair and Program Com-
mittee Member, including IEEE BIBM 2020, IEEE TrustCom
2020 Workshop, WWW 2021, AAAI 2022 Workshop. Her
research interests include graph theory, data center net-
works, parallel and distributed systems, design and analysis
of algorithms, and fault diagnosis.


	Blockchain and trusted reputation assessment-based incentive mechanism for healthcare services
	Introduction
	Related work
	System model and design goal
	System model
	 Threat model
	Design goal

	The proposed BtRaI
	Multidimensional comprehensive reputation assessment with multifactor moderation
	HC comprehensive reputation calculation
	PnF comprehensive reputation calculation
	CSP comprehensive reputation calculation

	Reputation-based RPBFT Consensus
	Reputation-based incentives

	Security and theoretical analysis
	Experimental analysis
	Reputation assessment results
	RPBFT efficiency
	Service incentive effect

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


